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In this paper, nonlinear free transverse vibrations of in-plane moving plates subjected to

plane stresses are investigated. The Hamilton principle is applied to derive the

governing equation and the associated boundary conditions. The method of multiple

scales is employed to analyze the nonlinear partial differential equation. The solvability

internal resonances. Some numerical examples are presented to demonstrate the effects

of in-plane moving speeds on the frequencies. The nonlinear frequencies of the in-plane

moving plate without internal resonances are numerically calculated. The relationship

between the nonlinear frequencies and the initial amplitudes is showed at different in-

plane moving speeds and the nonlinear coefficients, respectively. It is feasible to

investigate resonances without the modes not involved in the resonances. The effects of

the related parameters are demonstrated for the case of 3:1 and 1:1 internal resonances,

respectively. The differential quadrature scheme is developed to solve numerically the

governing equation and confirm results via the method of multiple scales.

& 2010 Published by Elsevier Ltd.
1. Introduction

Axially moving systems are present in various industrial applications such as the paper and plastic sheets in process, the
steel strip in a thin steel sheet production line, conveyor belts and chain in power transmission lines, aerial cableways,
band the cable, the band saw blade, and the like. To ensure that the systems are under stable operation, transverse
vibrations of these devices have been investigated to avoid the possible resulting fatigue and low quality. Therefore, the
vibration of such systems is necessary for the analysis and design of the broad class of technological devices.

A lot of earlier works for modeling two-dimensional axially moving systems used the one-dimensional string or beam
theory instead of the plate theory to avoid the complication. This simplification leads to useful and reasonable results when
the axially moving systems were narrow, the effects of the boundary conditions at the width ends on the prediction are
negligible, or the axially moving systems had no stress variations across the width, but two-dimensional analysis is
required for the modeling of many problems such as wide width plates, no free lateral boundaries, various forces across the
width, catching higher modes of vibration, intermediate supports or buckling, etc.

There have been so many publications on axially moving one-dimensional structures such as strings and beams, but
works on in-plane moving plates are rather limited. The earliest research on transverse vibrations of in-plane moving
plates can be dated back to 1982, Ulsoy and Mote [1] reduced the large-scale band saw blade to in-plane moving plates and
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analyzed the coupled transverse and torsional vibrations of band saw blade. Lee and Ng [2] investigated dynamic stability
of a moving rectangular plate with four free edges subject to in-plane acceleration and force perturbations based on
Hamilton’s principle and the assumed mode method. The effects of sinusoidal perturbations in respect of the in-plane
acceleration and external loads are then examined using Bolotin’s method. Lengoc and Mccallion [3–5] considered cutting
conditions on dynamic response of band saw blades. Lin [6,7] investigated the stability of a moving plate with two simply
supported and two free edges by using the canonical form of the equations of motion, subjected to a uniform in-plane
tension in transport direction. Wang [8] developed a mixed finite element formulation for a moving orthotropic plate
based on the Mindlin–Reissner plate model. The formulation leads to an unexpected artificial damping in the presence of a
simply supported boundary, which is related to the gyroscopic matrix formulation. Luo and Hutton [9] presented the
formulation of a moving triangular isotropic plate element subjected to in-plane forces and gyroscopic forces and
compared the results with the Rayleigh–Ritz method. Kim et al. [10] formulated the modal spectral element for thin plates
moving with constant speed under a uniform in-plane axial tension. Hatami et al. [11–13] studied free vibration of in-
plane moving symmetrically laminated plates subjected to in-plan forces by classical plate theory. Zhou and Wang [14–16]
investigated the dynamic characteristics and stability of in-plane moving viscoelastic rectangular thin plates. Hatami et al.
[17] developed an exact finite strip method for the free vibration analysis of in-plane moving viscoelastic plates. Banichuk
et al. [18] performed a general dynamic analysis and shown that the onset of instability takes place in the form of
divergence.

Historically, the nonlinear vibration of in-plane moving plates has been an important subject of research. However,
there are just a few publications on the nonlinear vibration of in-plane moving plates. Luo and Hamidzadeh [19]
obtained the frequencies and responses of the free vibration of traveling, nonlinear, elastic plates that are based on a
nonlinear plate theory. Hatami et al. [20] developed a nonlinear finite element formulation for analysis of axially moving
two-dimensional materials, based on the classical thin plate theory. Luo [21] obtained the analytical conditions for chaotic
motions of in-plane traveling, thin plates from the incremental energy approach and found that chaotic motion might
occur in the small-amplitude oscillations once the geometrical nonlinearity was considered. Luo and Hamidzadeh
[22] obtained analytically equilibrium, membrane force and buckling stability of full simply supported nonlinear traveling
plates.

Internal resonance is a typical nonlinear phenomenon. However, the investigations on the internal resonance for axially
moving structures are very limited even for one-dimensional cases. Chen et al. [23] investigated the nonlinear vibration
analysis of axially moving systems based on the multidimensional Lindstedt–Poincaré method and studied the
forced response of an axially moving beam with internal resonance between the first two transverse modes. Sze et al.
[24] investigated the nonlinear vibration analysis of axially moving beams based on the incremental harmonic balance
method and studied the forced response of an axially moving strip with internal resonance between the first two
transverse modes. Suweken and Horssen [25] investigated on the transversal vibrations of a conveyor belt with a low and
time-varying velocity. For special values of the belt parameters these sumtype and difference type of internal resonances
coincide giving rise to even more complicated dynamical behavior. Hang and Chen [26] investigated the combination
response analysis of an axially moving beam with internal resonance and obtained the complex internal resonance curves.
Hang and Chen [27] investigated nonlinear vibration of axially moving beams with varying velocities based on
the incremental harmonic balance method and discussed the critical velocity with internal resonance. Pakdemirli and
Özkaya [28] considered three-to-one internal resonance case of a general continuous system with an arbitrary cubic
nonlinearity. Özhan and Pakdemirli [29] further extended their treatments on internal resonance to the system with
external excitations.

There have been also many publications on the internal resonance for plates and beams. Chang et al. [30] investigated
nonlinear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance.
Lewandowski [31] studied beams membranes and plates in free vibration backbone curves in cases of internal resonance.
Abe et al. [32] studied two-mode responses of thin rectangular laminated plates subjected to a harmonic excitation with
internal resonance by using the method of multiple scales. Ribeiro and Petyt [33] investigated nonlinear free vibration of
isotropic plates with internal resonance. Leung and Fung [34] introduced a finite element method based on the virtual
work principle to determine the steady state response of frames in free or forced periodic vibration with internal
resonance. There have been no works on in-plane moving plates with internal resonances. To address the lacks of research
in the aspect, the present investigation focuses on nonlinear free transverse vibrations of in-plane moving plates with
internal resonances.

The present paper is organized as follows. Section 2 derives the governing equation and the associated boundary
conditions from the Hamilton principle and the Hooke law. Section 3 employs the method of multiple scales to analyze the
governing equation under the associated boundary conditions and uses the complex mode approach to analyze
and numerically calculate the exact natural frequencies and modes of the linear generating system. Section 4 establishes
the solvability conditions without internal resonances and numerically calculates the nonlinear frequencies of the in-plane
moving plate. Sections 5 and 6, respectively, investigate 3:1 and 1:1 internal resonances and establish the corresponding
solvability conditions. Some numerical examples are presented to demonstrate the variations of the amplitude ratios
with the differences of the two frequencies and illustrate the variations at different nonlinear coefficients. Section 7
develops the differential quadrature schemes to confirm the analytical results. Section 8 ends the paper with concluding
remarks.
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2. Problem formulation

Consider a rectangular thin plate with constant in-plane moving speed G in the x direction. The plate has length a, width
b, and thickness h in the x, y, and z directions, respectively. Although the transverse vibration is generally coupled with the
in-plane vibration, many researchers considered only the transverse vibration in order to derive a tractable and simple
equation. It must be remarked that: (1) the equations of motion with in-plane vibrations are also tractable; (2) by
neglecting these vibrations, one obtains a too stiff model. In fact, the transverse vibration is more vulnerable than the in-
plane vibration.

The total kinetic energy T of structure mass for the in-plane moving plate under in-plane stresses can be written as

T ¼

Z a

0

Z b

0

r
2

G2
þ

dw

dt

� �2
" #

dydx¼

Z a

0

Z b

0

r
2

G2
þðw,tþGw,xÞ

2
h i

dydx (1)

where a comma preceding x or t denotes partial differentiation with respect to x or t, r is the plate’s mass per unit of area,
and w is the total transverse displacement. The first term in Eq. (1) represents the kinetic energy associated with the
longitudinal in-plane motion of the plate, and the second term represents the kinetic energy associated with the transverse
vibration.

The total potential energy U for the in-plane moving plate under in-plane stresses includes the strain energy Ub due to
bending and the energy Ug due to the effect of an in-plane force per unit width, Nx0, on the transverse deflection

U ¼UbþUg (2)

The strain energy Ub can be written as

Ub ¼

Z a

0

Z b

0

Z h=2

�h=2
ðsxexþsyeyþtxygxyÞdzdydx (3)

where sx and sy are the normal stress components, txy is the shear stress components, ex and ey are the normal strain
components, and gxy is the shear strain components.

The strain–displacement relations for the classical thin plate including the nonlinearity due to midline strething can be
written as

ex ¼�zw,xxþ
1

2
w,2

x , ey ¼�zw,yyþ
1

2
w,2y , gxy ¼�2zw,xyþw,xw,y (4)

The material of the plate is linear elastic, defined by Hooke’s law

sx ¼
E

1�m2
ðexþmeyÞ, sy ¼

E

1�m2
ðeyþmexÞ, txy ¼

E

2ð1þmÞ gxy (5)

where E is Young’s modulus and m is Poisson’s ratio.
The energy Ug due to the in-plane force per unit width can be written as

Ug ¼

Z a

0

Z b

0

1

2
Nx0w,2

x dydx (6)

The Hamilton principle takes the familiar form:

d
Z t2

t1

ðT�UÞdt¼ 0 (7)

Performing the variation on the energy terms and substituting the results into Eq. (7) give the governing partial
differential equation of the transverse nonlinear vibration for the in-plane moving plate in free vibration

rðw,ttþ2Gw,xtþG2w,xxÞþDðw,xxxxþ2w,xxyyþw,yyyyÞ�Nx0w,xx

¼ 6
D

h2
ðw,2x w,xxþ2w,xw,yw,xyþw,2

yw,yyÞþmðw,2
yw,xx�2w,xw,yw,xyþw,2

x w,yyÞ

h i
(8)

and the boundary conditions of the in-plane moving plate with four edges simple supports

ðwÞx ¼ 0,a ¼ 0, ðw,xxÞx ¼ 0,a ¼ 0; ðwÞy ¼ 0,b ¼ 0, ðw,yyÞy ¼ 0,b ¼ 0 (9)

where D=Eh3/[12(1�m2)].
It is convenient to introduce dimensionless parameters and variables

w2
wffiffiffiffiffi
ke
p h, t2

t

a

ffiffiffiffiffiffiffiffi
Nx0

r

s
, x2

x

a
, y2

y

b
, z¼

D

Nx0a2
, g¼G

ffiffiffiffiffiffiffiffi
r

Nx0

r
, x¼

a

b
(10)

Substituting Eq. (10) into Eqs. (8) and (9), one obtains the dimensionless governing partial differential equation

w,ttþ2gw,xtþðg2�1Þw,xxþzðw,xxxxþ2x2w,xxyyþx
4w,yyyyÞ

¼ 6ekz½ðw,xxþx
2mw,yyÞw,2

xþx
2
ðmw,xxþx

2w,yyÞw,2
yþ2x2

ð1�mÞw,xw,yw,xy� (11)



Y.-Q. Tang, L.-Q. Chen / Journal of Sound and Vibration 330 (2011) 110–126 113
and the dimensionless boundary conditions

ðwÞx ¼ 0,1 ¼ 0, ðw,xxÞx ¼ 0,1 ¼ 0; ðwÞy ¼ 0,1 ¼ 0, ðw,yyÞy ¼ 0,1 ¼ 0 (12)

3. Multi-scale analysis and solution of the linear generating system

The solutions to Eq. (11) can be assumed as

wðx,y,t; eÞ ¼w0ðx,y,T0,T1Þþew1ðx,y,T0,T1ÞþOðe2Þ (13)

where T0=t and T1=et are, respectively, the fast and slow time scales in the method of multiple scales.
Substitution of Eq. (13) and the following relationship:

d

dt
¼

@

@T0
þe @

@T1
þOðe2Þ,

d2

dt2
¼

@2

@T2
0

þ2e @2

@T0@T1
þOðe2Þ (14)

into Eqs. (11) and (12) and then equalization of coefficients of e0 and e1 in the resulting equations lead to:

e0 : w0,T0T0
þ2gw0,xT0

þðg2�1Þw0,xxþzðw0,xxxxþ2x2w0,xxyyþx
4w0,yyyyÞ ¼ 0 (15)

e0 : ðw0Þx ¼ 0,1 ¼ 0, ðw0,xxÞx ¼ 0,1 ¼ 0; ðw0Þy ¼ 0,1 ¼ 0, ðw0,yyÞy ¼ 0,1 ¼ 0 (16)

e1 : w1,T0T0
þ2gw1,xT0

þðg2�1Þw1,xxþzðw1,xxxxþ2x2w1,xxyyþx
4w1,yyyyÞ

¼ 6kz½ðw0,xxþx
2mw0,yyÞw0,2

xþx
2
ðmw0,xxþx

2w0,yyÞw0,2
y

þ2x2
ð1�mÞw0,xw0,yw0,xy��2ðw0,T0T1

þgw0,xT1
Þ (17)

e1 : ðw1Þx ¼ 0,1 ¼ 0, ðw1,xxÞx ¼ 0,1 ¼ 0; ðw1Þy ¼ 0,1 ¼ 0, ðw1,yyÞy ¼ 0,1 ¼ 0 (18)

The solution to Eq. (15) can be assumed as

w0ðx,y,tÞ ¼
X1

m ¼ 1

X1
n ¼ 1

cmnðx,yÞAmnðT1Þe
iomnT0þcc (19)

where Amn denotes a complex function to be determined later, cmn(x, y) is the mnth mode function of the system, omn is
the mnth natural frequency of the system, and cc stands for complex conjugate of the proceeding terms.

Substitution of Eq. (19) into Eq. (15) leads to

�o2
mncmnþ2iomngcmn,xþðg2�1Þcmn,xxþzðcmn,xxxxþ2x2cmn,xxyyþx

4cmn,yyyyÞ ¼ 0 (20)

The solution to Eq. (20) can be assumed as

cmnðx,yÞ ¼fnðxÞjmðyÞ (21)

Substitution of Eq. (21) into the last two terms of Eq. (16) leads to

jmðyÞ ¼ sinðmpyÞ (22)

Substitution of Eq. (22) into Eq. (20), multiplying jm(y), and integrating from y=0 to 1, then applying the orthogonal
condition, Eq. (20) yields

zfn,xxxxþðg2þ2B2zx
2
�1Þfn,xxþ2iomngfn,xþðB4zx

4
�o2

mnÞfn ¼ 0 (23)

where

B2ðmÞ ¼

Z 1

0
jm,yyjm dy=

Z 1

0
j2

m dy, B4ðmÞ ¼

Z 1

0
jm,yyyyjm dy=

Z 1

0
j2

m dy (24)

The solution to ordinary differential equation (23) can be expressed by

fnðxÞ ¼ C1nðe
ib1nxþC2n eib2nxþC3n eib3nxþC4n eib4nxÞ (25)

Substitution of Eq. (25) into Eq. (23) leads to

zb4
jn�ðg

2þ2B2zx
2
�1Þb2

jn�2omngbjnþðB4zx
4
�o2

mnÞ ¼ 0 ðj¼ 1,2,3,4Þ (26)

When the boundary conditions of the in-plane moving plate are simple supports on x=0 and 1, the modal function in
the x direction is [35]

fnðxÞ ¼ c1 eib1nx�
ðb2

4n�b
2
1nÞðe

ib3n�eib1n Þ

ðb2
4n�b

2
2nÞðe

ib3n�eib2n Þ
eib2nx�

ðb2
4n�b

2
1nÞðe

ib2n�eib1n Þ

ðb2
4n�b

2
3nÞðe

ib2n�eib3n Þ
eib3nx

(

� 1�
ðb2

4n�b
2
1nÞðe

ib3n�eib1n Þ

ðb2
4n�b

2
2nÞðe

ib3n�eib2n Þ
þ
ðb2

4n�b
2
1nÞðe

ib2n�eib1n Þ

ðb2
4n�b

2
3nÞðe

ib2n�eib3n Þ

 !
eib4nx

)
(27)



Fig. 1. Dimensionless natural frequencies vs. dimensionless in-plane moving speeds for the in-plane moving plate.
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in which bjn (j=1, 2, 3, 4) and the mnth natural frequency omn can be solved [36] from Eq. (26) and

eiðb1n þb2nÞ þeiðb3nþb4nÞ
h i

ðb2
1n�b

2
2nÞðb

2
3n�b

2
4nÞþ½e

iðb1nþb3nÞ þeiðb2nþb4nÞ�

�ðb2
3n�b

2
1nÞðb

2
2n�b

2
4nÞþ½e

iðb2nþb3nÞ þeiðb1n þb4nÞ�ðb2
2n�b

2
3nÞðb

2
1n�b

2
4nÞ ¼ 0 (28)

In this paper, numerical calculations are performed to investigate the nonlinear free transverse vibration of an in-plane
moving plate with m=0.3, z=1.0, and x=1.0. The natural frequencies of the linear generating system can be calculated
numerically. Fig. 1 presents the variation of the first four-order dimensionless natural frequencies of the plate with
dimensionless in-plane moving speeds. The solid line denotes the first natural frequency o11, the dashed line denotes the
second natural frequency o12, the dash-dot line denotes the third natural frequency o21, and the dotted line denotes the
fourth natural frequency o22. They have found that the natural frequencies decrease with increasing in-plane moving
speeds. The exact values at which the natural frequencies vanish are called the critical speeds and afterwards the system is
unstable about the zero equilibrium. The linear critical in-plane moving speeds for the first two modes are, respectively,
g1cr=6.36227 and g2cr=7.91739.

To investigate nonlinear free transverse vibration of the in-plane moving plate, the solution to Eq. (15) is assumed to be
expressed by

w0ðx,y,T0,T1Þ ¼cslðx,yÞAslðT1Þe
ioslT0þcs0l0 ðx,yÞAs0 l0 ðT1Þe

ios0 l0 T0þcc (29)

where osl and os0 l0 are, respectively, the slth and the s’l’th natural frequencies of the e0-order system defined by Eqs. (26) and (28).

4. No internal resonances

Substitution of Eq. (29) into Eq. (17) yields

w1,T0T0
þ2gw1,xT0

þðg2�1Þw1,xxþzðw1,xxxxþ2x2w1,xxyyþx
4w1,yyyyÞ

¼�½E1Asl,T1
þkðG11A2

slAslþG12AslAs0l0As0 l0 Þ�e
ioslT0

�½E2As0 l0 ,T1
þkðG22A2

s0 l0As0l0 þG21As0 l0AslAslÞ�e
ios0 l0 T0þccþNST (30)

where NST stands for non-secular terms and

Ej ¼ 2ðiohchþgch,xÞ ðif j¼ 1, h¼ sl; if j¼ 2, h¼ suluÞ (31a)

Gj ¼�6z ch,2x ðmx
2ch,yyþch,xxÞþx

2ch,2y ðx
2ch,yyþmch,xxÞ

n
þ2 ch,xch,xðmx2ch,yyþch,xxÞþx

2ch,ych,yðx
2ch,yyþmch,xxÞ

h
þð1�mÞx2

ðch,xch,ych,xyþch,xch,ych,xyþch,xch,ych,xyÞ

io
�ðif j¼ 11, h¼ sl; if j¼ 22, h¼ s0l0Þ (31b)
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Gh ¼�12z½ð1�mÞx2
ðci,xcj,ycj,xyþci,xcj,ycj,xyþcj,xci,ycj,xy

þcj,xci,ycj,xyþcj,xcj,yci,xyþcj,xcj,yci,xyÞ

þx2ci,ycj,yðx
2cj,yyþmcj,xxÞþx

2cj,ycj,yðx
2ci,yyþmci,xxÞ

þx2ci,ycj,yðx
2cj,yyþmcj,xxÞþci,xcj,xðmx2cj,yyþcj,xxÞ

þci,xcj,xðmx
2cj,yyþcj,xxÞþcj,xcj,xðmx2ci,yyþci,xxÞ�

�ðif h¼ 12, i¼ sl, j¼ sulu; h¼ 21, i¼ sulu, j¼ slÞ (31c)

It can be checked that the linear part of the mass and stiffness operators in governing equation (15) is symmetric and
the gyroscopic operator is skew symmetric under the corresponding boundary conditions (16). The solvability condition
presented by Chen and Zu [37] demands the orthogonal relationships

/E1Asl,T1
þkðG11A2

slAslþG12AslAs0 l0As0 l0 Þ, cslS¼ 0 (32a)

/E2As0l0 ,T1
þkðG22A2

s0l0As0 l0 þG21As0l0AslAslÞ, cs0 l0S¼ 0 (32b)

where the inner product is defined for complex functions f and g on [0,1] as

/f ,gS¼
Z 1

0
f g dx (33)

Application of the distributive law of the inner product to Eqs. (32a) and (32b) leads to

Asl,T1
þkðg11A2

slAslþg12AslAsuluAsuluÞ ¼ 0 (34a)

As0 l0 ,T1
þkðg22A2

s0l0As0 l0 þg21As0 l0AslAslÞ ¼ 0 (34b)

where

g11 ¼

Z 1

0

Z 1

0
G11csl dxdy

.Z 1

0

Z 1

0
E1csl dxdy, g22 ¼

Z 1

0

Z 1

0
G22cs0l0 dxdy

.Z 1

0

Z 1

0
E2cs0 l0 dxdy,

g12 ¼

Z 1

0

Z 1

0
G12csl dxdy

.Z 1

0

Z 1

0
E1csl dxdy, g21 ¼

Z 1

0

Z 1

0
G21cs0l0 dxdy

.Z 1

0

Z 1

0
E2cs0 l0 dxdy

9>>>=
>>>;

(35)

It can be numerically demonstrated that g11, g12, g21, and g22 are negative imaginary numbers.
Express the solution to Eqs. (34a) and (34b) in polar form

Asl ¼ aslðT1Þe
ibslðT1Þ, As0 l0 ¼ as0l0 ðT1Þe

ibs0 l0 ðT1Þ (36)

Substituting Eq. (36) into Eq. (34) yields

asl,T1
¼ 0

aslbsl,T1
¼�kgI

11a3
sl�kgI

12a2
s0l0asl

as0 l0 ,T1
¼ 0

as0 l0bs0l0 ,T1
¼�kgI

22a3
s0 l0�kgI

21a2
slas0 l0

9>>>>=
>>>>;

(37)

where gi
I (i=11, 12, 21, 22) is imaginary part of the gi (i=11, 12, 21, 22). Eq. (37) obviously has a zero solution. If we assume

that there is a non-zero solution, there are two possibilities: (1) as0 l0=0 and asla0; (2) asl=0 and as0l0a0; and (3) asla0 and
as0l0a0.

In the first uncoupled case, substituting as0l0=0 and asla0 into Eq. (37) and integrating the results yield

asl ¼ asl0, bsl ¼�kgI
11a

2
sl0T1þbsl0 (38)

where the initial amplitude asl0 and the phase bsl0 are constants. Inserting Eq. (38) into Eq. (36) and then inserting the
resulting equation into Eq. (29) gives the slth nonlinear frequency:

Osl ¼osl�ekgI
11a

2
sl0 (39)

In the second uncoupled case, we can similarly obtain the s’l’th nonlinear frequency:

Os0l0 ¼os0 l0�ekgI
22a

2
s0 l00 (40)

where the initial amplitude asl0 and the phase bsl0 are constants.
In the third coupled case, substituting asla0 and as’l’a0 into Eq. (37) yields

a2
sl0

a2
s0l00

¼�
gI

12

gI
11

,
a2

sl0

a2
s0 l00

¼�
gI

22

gI
21

(41)

The two equations in Eq. (41) cannot come into existence at the same time. Thus, the assumption is wrong.
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It can be found that the slth mode and the s’l’th mode cannot be non-zero at the same time from the three
cases. Therefore, it is feasible to investigate resonances with the possible contributions of modes not involved in
the resonance.

Based on Eqs. (39) and (40), the nonlinear frequencies of nonlinear free vibration of the in-plane moving plate without
internal resonances can be numerically calculated. Because e is a characterization parameter, there is no specific physical
meaning. In this paper, let e=1. Fig. 2 shows the relationship of the in-plane moving plate for k=1 between the nonlinear
frequencies and the initial amplitudes at different in-plane moving speeds for e=1, respectively. Both modes predict the
same trends of the nonlinear free vibration frequencies varying with the initial amplitudes and the in-plane moving
speeds. The dotted lines denote g=2.8, the dashed lines denote g=2.8, and the solid lines denote g=3.0. They have found
that the nonlinear frequencies increase with increase in initial amplitudes. When the initial amplitudes and the phases are
zero, Eqs. (39) and (40) yield the frequencies of the corresponding linear system. The larger in-plane moving speed results
in the smaller frequencies and the rapid increase of the frequencies with the initial amplitudes.

Fig. 3(a) and (b) show the relationship of the in-plane moving plate for e=1 between the nonlinear frequencies and the
initial amplitudes at different nonlinear coefficients for g=3.0, respectively. The dotted lines denote k=0.6, the dashed lines
denote k=0.8, and the solid lines denote k=1.0 in Fig. 3. Both modes predict the same trends of the nonlinear free vibration
frequencies varying with the nonlinear coefficients. The larger nonlinear coefficient results in the rapid increase of the
nonlinear frequencies with the initial amplitudes, and the increase becomes substantial when the in-plane moving speed is
close to the critical one. Besides, the effects are more significant in the higher order mode. The nonlinear frequencies
involving higher order modes are more sensitive to the initial amplitudes, the in-plane moving speeds, and the nonlinear
coefficients.
Fig. 2. The relationship between the nonlinear frequencies and the initial amplitudes at different in-plane moving speed: (a) the first mode and (b) the

second mode.

Fig. 3. The relationship between the nonlinear frequencies and the initial amplitudes at different nonlinear coefficients: (a) the first mode and (b) the

second mode.
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5. 3:1 internal resonance

If any two natural frequencies of generating autonomous linear system (15) are approximately in the ratio of 3:1,
internal resonance may occur. A detuning parameter s is introduced to quantify the deviation of os0 l0 from 3osl, and os0 l0 is
described by

os0l0 ¼ 3oslþes (42)

Substitution of Eqs. (29) and (42) into Eq. (17) yields

w1,T0T0
þ2gw1,xT0

þðg2�1Þw1,xxþzðw1,xxxxþ2x2w1,xxyyþx
4w1,yyyyÞ

¼ �½E1Asl,T1
þkðG11A2

slAslþG12AslAs0 l0As0l0 þH1As0 l0A
2

sl e
isT1 Þ�eioslT0

�½E2As0 l0 ,T1
þkðG22A2

s0 l0As0l0 þG21As0 l0AslAslþH2A3
sle
�isT1 Þ�eios0 l0 T0þccþNST (43)

where NST stands for non-secular terms and

Ej ¼ 2ðiohchþgch,xÞ ðif j¼ 1, h¼ sl; if j¼ 2, h¼ suluÞ (44a)

Gj ¼�6zfch,2
x ðmx

2ch,yyþch,xxÞþx
2ch,2

y ðx
2ch,yyþmch,xxÞ

þ2½ch,xch,xðmx2ch,yyþch,xxÞþx
2ch,ych,yðx

2ch,yyþmch,xxÞ

þð1�mÞx2
ðch,xch,ych,xyþch,xch,ych,xyþch,xch,ych,xyÞ�g

ðif j¼ 11, h¼ sl; if j¼ 22, h¼ suluÞ (44b)

Gh ¼�12z½ð1�mÞx2
ðci,xcj,ycj,xyþci,xcj,ycj,xyþcj,xci,ycj,xy

þcj,xci,ycj,xyþcj,xcj,yci,xyþcj,xcj,yci,xyÞ

þx2ci,ycj,yðx
2cj,yyþmcj,xxÞþx

2cj,ycj,yðx
2ci,yyþmci,xxÞ

þx2ci,ycj,yðx
2cj,yyþmcj,xxÞþci,xcj,xðmx2cj,yyþcj,xxÞ

þci,xcj,xðmx
2cj,yyþcj,xxÞþcj,xcj,xðmx2ci,yyþci,xxÞ�

ðif h¼ 12, i¼ sl, j¼ sulu; h¼ 21, i¼ sulu, j¼ slÞ (44c)

H1 ¼�6zfcsl,
2
x ðmx

2cs0 l0 ,yyþcs0 l0 ,xxÞþx
2csl,

2
y ðx

2cs0 l0 ,yyþmcs0l0 ,xxÞ

þ2½ð1�mÞx2
ðcsl,xcs0l0 ,ycsl,xyþcsl,xcsl,ycs0 l0 ,xyþcs0 l0 ,xcsl,ycsl,xyÞ

þcsl,xcs0 l0 ,xðmx
2csl,yyþcsl,xxÞþx

2csl,ycs0 l0 ,yðx
2csl,yyþmcsl,xxÞ�g (44d)

H2 ¼�6z½csl,
2
x ðmx

2csl,yyþcsl,xxÞþx
2csl,

2
y ðx

2csl,yyþmcsl,xxÞ

þ2ð1�mÞx2csl,xcsl,ycsl,xy� (44e)

The solvability condition demands the orthogonal relationships

E1Asl,T1
þkðG11A2

slAslþG12AslAs0 l0As0l0 þH1As0l0A
2

sl e
isT1 Þ, csl

D E
¼ 0,

/E2As0 l0 ,T1
þkðG22A2

s0 l0As0l0 þG21As0 l0AslAslþH2A3
sl e
�isT1 Þ, cs0l0S¼ 0

9=
; (45)

Application of the distributive law of the inner product to Eq. (45) leads to

Asl,T1
þkðg11A2

slAslþg12AslAs0l0As0l0 þh1As0 l0A
2

sl e
isT1 Þ ¼ 0,

As0 l0 ,T1
þkðg22A2

s0 l0As0l0 þg21As0l0AslAslþh2A3
sl e
�isT1 Þ ¼ 0

)
(46)

where

g11 ¼

Z 1

0

Z 1

0
G11csl dxdy=

Z 1

0

Z 1

0
E1csl dxdy, g22 ¼

Z 1

0

Z 1

0
G22cs0l0 dxdy=

Z 1

0

Z 1

0
E2cs0 l0 dxdy,

g12 ¼

Z 1

0

Z 1

0
G12csl dxdy=

Z 1

0

Z 1

0
E1csl dxdy, g21 ¼

Z 1

0

Z 1

0
G21cs0l0 dxdy=

Z 1

0

Z 1

0
E2cs0 l0 dxdy,

h1 ¼

Z 1

0

Z 1

0
H1csl dxdy=

Z 1

0

Z 1

0
E1csl dxdy, h2 ¼

Z 1

0

Z 1

0
H2cs0l0 dxdy=

Z 1

0

Z 1

0
E2cs0 l0 dxdy

9>>>>>>>>>=
>>>>>>>>>;

(47)

It can be numerically demonstrated that g11, g12, g21, and g22 are negative imaginary numbers and h1 and h2 are a
complex numbers.

Express the solution to Eq. (46) in polar form

Asl ¼ aslðT1Þe
ibslðT1Þ, As0 l0 ¼ as0l0 ðT1Þe

ibs0 l0 ðT1Þ (48)



Y.-Q. Tang, L.-Q. Chen / Journal of Sound and Vibration 330 (2011) 110–126118
Substituting Eq. (48) into Eq. (46) yields

asl,T1
¼�k½hR

1 cosðyÞ�hI
1 sinðyÞ�asulua2

sl (49a)

aslbsl,T1
¼�kaslfg

I
11a

2
slþgI

12a
2
s0 l0 þ½h

I
1 cosðyÞþhR

1 sinðyÞ�aslas0l0 g (49b)

as0 l0 ,T1
¼�k½hR

2 cosðyÞþhI
2 sinðyÞ�a3

sl (49c)

as0 l0bs0 l0 ,T1
¼�k gI

22a
3
s0 l0 þgI

21a
2
slas0 l0 þ hI

2 cos yð Þ�hR
2 sin yð Þ

� �
a3

sl

� �
(49d)

where gi
I (i=11, 12, 21, 22) is imaginary part of the gi (i=11, 12, 21, 22), hi

R and hi
I (i=1, 2) are real part and imaginary part of

the hi (i=1, 2) respectively, and y=bs0 l0 �3bsl+sT1.
There are two possibilities: (1) asl=0 and as0l0a0; and (2) asla0 and as0 l0a0.
In the first uncoupled case, we can similarly obtain the s’l’th nonlinear frequency:

Osulu ¼osulu�ekgI
22a

2
s0 l00 (50)

In the second coupled case, differentiating y once with respect to T1 and using Eqs. (49b) and (49d), we obtain

aslas0 l0y,T1
¼ aslas0 l0sþkð3gI

11�gI
21Þas0l0a3

slþkð3gI
12�gI

22Þasla3
s0 l0

þ3k½hI
1 cosðyÞþhR

1 sinðyÞ�a2
sla

2
s0l0�k½hI

2 cosðyÞ�hR
2 sinðyÞ�a4

sl (51)

For steady-state solutions, the amplitudes asl and as’l’ and the new phase y angle should be constant. Then we obtain

�k½hR
1 cosðyÞ�hI

1 sinðyÞ�as0 l0a2
sl ¼ 0 (52a)

�k½hR
2 cosðyÞþhI

2 sinðyÞ�a3
sl ¼ 0 (52b)

aslas0l0sþkð3gI
11�gI

21Þas0l0a3
slþkð3gI

12�gI
22Þasla3

s0 l0

þ3k½hI
1 cosðyÞþhR

1 sinðyÞ�a2
sla

2
s0l0�k½hI

2 cosðyÞ�hR
2 sinðyÞ�a4

sl ¼ 0 (52c)

Using Eqs. (52a) and (52b), we obtain

sinðyÞ
cosðyÞ

¼
hR

1

hI
1

¼�
hR

2

hI
2

¼ C (53)

Substituting Eq. (53) into Eq. (52) and eliminating y yields

s
a2

s0l0
¼ �k ð3gI

11�gI
21Þ

a2
sl

a2
s0l0
þð3gI

12�gI
22Þ7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þC2

p asl

as0l0
hI

2

a2
sl

a2
s0 l0
�3hI

1

 !					
					

" #
(54)

3:1 internal resonances between the first and second modes and between the third and fourth modes of the in-plane
moving plates with k=1 may be activated when g is near g=3.60443 and 11.5303, respectively. Because they provide the
same trends, we focus on the case 3:1 internal resonances between the first and second modes. Fig. 4 shows variations
of the amplitude ratios a11/a12 with the differences of the two frequencies s/a2

12 for this case. It can be found that
two solutions exist when s/a2

12o891.38 or s/a2
12420,806, four solutions exist when s/a2

12=891.38, s/a2
12=4898, or
Fig. 4. Variations of the amplitude ratios a11/a12 with the differences of the two frequencies s=a2
21 for the case of 3:1 internal resonance between the first

and second modes: (a) overview diagram and (b) detail with enlarged scale.



Fig. 5. Variations of the amplitude ratios a11/a12 with the differences of the two frequencies s=a2
21 for the case of 3:1 internal resonance between the first

and second modes at different nonlinear coefficient: (a) overview diagram and (b) detail with enlarged scale.
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s/a2
12=20,806, six solutions exist when 891.38os/a2

12o924.8, 924.8os/a2
12o4898, or 4898os/a2

12o20,806, and five
solutions exist when s/a2

12=924.8.
Fig. 5 shows variations of the amplitude ratios a11/a12 with the differences of the two frequencies s/a2

12 for the case of
3:1 internal resonance between the first and second modes of the in-plane moving plates at different nonlinear
coefficients. The dotted lines denote k=0.6, the dashed lines denote k=0.8, and the solid lines denote k=1.0. The
relationship between s/a2

12 and the nonlinear coefficient at a given a11/a12 is linear.
6. 1:1 internal resonance

If any two natural frequencies of linear generating system (15) are approximately in the ratio of 1:1, internal resonance
may occur. A detuning parameter s is introduced to quantify the deviation of s0l0 from osl, and os0l0 is described by

os0 l0 ¼oslþes (55)

Substitution of Eqs. (29) and (55) into Eq. (17) yields

w1,T0T0
þ2gw1,xT0

þðg2�1Þw1,xxþzðw1,xxxxþ2x2w1,xxyyþx
4w1,yyyyÞ

¼�½E1Asl,T1
þkðF1A2

slAslþG1AslAs0l0As0 l0 Þ�e
ioslT0

�½E2As0l0 ,T1
þkðF2A2

s0l0As0 l0 þG2As0 l0AslAslÞ�e
ios0 l0 T0

þkH1A2
s0l0Asl e

2ios0 l0 T0�ioslT0þkH2A2
slAs0l0 e

2ioslT0�ios0 l0 T0þccþNST (56)

where NST stands for non-secular terms and

Ej ¼ 2ðiohchþgch,xÞ ðif j¼ 1, h¼ sl; if j¼ 2, h¼ suluÞ (57a)

Fj ¼�6z ch,2x ðmx
2ch,yyþch,xxÞþx

2ch,2
y ðx

2ch,yyþmch,xxÞ

n
þ2 ch,xch,xðmx2ch,yyþch,xxÞþx

2ch,ych,yðx
2ch,yyþmch,xxÞ

h
þð1�mÞx2

ðch,xch,ych,xyþch,xch,ych,xyþch,xch,ych,xyÞ�g

ðif j¼ 1, h¼ sl; if j¼ 2, h¼ suluÞ (57b)

Gh ¼�12z½ð1�mÞx2
ðci,xcj,ycj,xyþci,xcj,ycj,xyþcj,xci,ycj,xy

þcj,xci,ycj,xyþcj,xcj,yci,xyþcj,xcj,yci,xyÞ

þx2ci,ycj,yðx
2cj,yyþmcj,xxÞþx

2cj,ycj,yðx
2ci,yyþmci,xxÞ

þx2ci,ycj,yðx
2cj,yyþmcj,xxÞþci,xcj,xðmx2cj,yyþcj,xxÞ

þci,xcj,xðmx2cj,yyþcj,xxÞþcj,xcj,xðmx
2ci,yyþci,xxÞ

i
ðif h¼ 1, i¼ sl, j¼ sulu; h¼ 2, i¼ sulu, j¼ slÞ (57c)
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Hh ¼�6z ci,
2
x ðmx

2cj,yyþcj,xxÞþx
2ci,

2
y ðx

2cj,yyþmcj,xxÞ

n
þ2 ð1�mÞx2

ðci,xcj,yci,xyþci,xci,ycj,xyþcj,xci,yci,xyÞ

h
þci,xcj,xðmx2ci,yyþci,xxÞþx

2ci,ycj,yðx
2ci,yyþmci,xxÞ

i
g

ðif h¼ 1, i¼ sulu, j¼ sl; h¼ 2, i¼ sl, j¼ suluÞ (57d)

The solvability condition demands the orthogonal relationships

E1Asl,T1
þkF1A2

slAslþkG1AslAs0l0As0l0�kH1A2
s0l0Asl e

2isT1�kH2A2
slAs0l0 e

�isT1þðE2As0l0 ,T1
þkF2A2

s0 l0As0 l0 þkG2As0 l0AslAslÞe
isT1 , csl

D E
¼ 0,

E2As0 l0 ,T1
þkF2A2

s0l0As0l0 þkG2As0l0AslAsl�kH1A2
s0l0Asl e

isT1�kH2A2
slAs0 l0 e

�2isT1þðE1Asl,T1
þkF1A2

slAslþkG1AslAs0 l0As0l0 Þe
�isT1 , cs0 l0

D E
¼ 0

9>=
>;

(58)

Application of the distributive law of the inner product to Eq. (58) leads to

e11Asl,T1
þkf11A2

slAslþkg11AslAs0 l0As0 l0�kh11A2
s0 l0Asl e

2isT1�kh12A2
slAs0l0 e

�isT1þðe12As0 l0 ,T1
þkf12A2

s0 l0As0 l0 þkg12As0 l0AslAslÞe
isT1 ¼ 0,

e22As0 l0 ,T1
þkf22A2

s0 l0As0 l0 þkg22As0l0AslAsl�kh21A2
s0l0Asl e

isT1�kh22A2
slAs0l0 e

�2isT1þðe21Asl,T1
þkf21A2

slAslþkg21AslAsuluAsuluÞe
�isT1 ¼ 0

9=
;
(59)

where

e11 ¼

Z 1

0

Z 1

0
E1csl dxdy, e12 ¼

Z 1

0

Z 1

0
E2csl dxdy, e21 ¼

Z 1

0

Z 1

0
E1cs0l0 dxdy, e22 ¼

Z 1

0

Z 1

0
E2cs0l0 dxdy,

f11 ¼

Z 1

0

Z 1

0
F1csl dxdy, f12 ¼

Z 1

0

Z 1

0
F2csl dxdy, f21 ¼

Z 1

0

Z 1

0
F1cs0 l0 dxdy, f22 ¼

Z 1

0

Z 1

0
F2cs0l0 dxdy,

g11 ¼

Z 1

0

Z 1

0
G1csl dxdy, g12 ¼

Z 1

0

Z 1

0
G2csl dxdy, g21 ¼

Z 1

0

Z 1

0
G1cs0l0 dxdy, g22 ¼

Z 1

0

Z 1

0
G2cs0l0 dxdy,

h11 ¼

Z 1

0

Z 1

0
H1csl dxdy, h12 ¼

Z 1

0

Z 1

0
H2csl dxdy, h21 ¼

Z 1

0

Z 1

0
H1cs0l0 dxdy, h22 ¼

Z 1

0

Z 1

0
H2cs0l0 dxdy

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(60)

It can be numerically demonstrated that e12=e21= f12= f21=g12=g21=h12=h21=0.
Eq. (59) can be rewritten as

Asl,T1
þkS11A2

slAslþkS12AslAs0 l0As0 l0 þkR1A2
s0l0Asl e

2isT1 ¼ 0,

As0l0 ,T1
þkS22A2

s0l0As0 l0 þkS21As0 l0AslAslþkR2A2
slAs0 l0 e

�2isT1 ¼ 0

)
(61)

where

S11 ¼ f11=e11, S12 ¼ g11=e11, S22 ¼ f22=e22, S21 ¼ g22=e22, R1 ¼�h11=e11, R2 ¼�h22=e22 (62)

It can be numerically demonstrated that S11, S12, S21, and S22 are negative imaginary numbers and R1 and R2 are a
complex numbers.

Express the solution to Eq. (61) in polar form

Asl ¼ aslðT1Þe
ibslðT1Þ, As0 l0 ¼ as0 l0 ðT1Þe

ibs0 l0 ðT1Þ (63)

Substituting Eq. (63) into Eq. (61) yields

asl,T1
¼�k½RR

1 cosð2yÞ�RI
1 sinð2yÞ�asla2

s0l0 (64a)

aslbsl,T1
¼�kaslfS

I
11a

2
slþSI

12a
2
s0l0 þ½R

I
1 cosð2yÞþRR

1 sinð2yÞ�a2
s0l0 g (64b)

asulu,T1
¼�k½RR

2 cosð2yÞþRI
2 sinð2yÞ�a2

slasulu (64c)

as0l0bs0 l0 ,T1
¼�kas0 l0 fS

I
22a

2
s0l0 þSI

21a
2
slþ½R

I
2 cosð2yÞ�RR

2 sinð2yÞ�a2
slg (64d)

where Si
I (i=11, 12, 21, 22) is imaginary part of the Si (i=11, 12, 21, 22), Ri

R and Ri
I (i=1, 2) are real part and imaginary part of

the Ri (i=1, 2), respectively, and y=bs0 l0 �bsl+sT1.
There are three possibilities: (1) asl=0 and as0 l0a0; (2) as0l0=0 and asla0; and (3) asla0 and as0 l0a0.
In the first uncoupled case, we can similarly obtain the s0l0th nonlinear frequency:

Osulu ¼osulu�ekSI
22a

2
s0l00 (65)

In the second uncoupled case, we can similarly obtain the slth nonlinear frequency:

Osl ¼osl�ekSI
11a

2
sl0 (66)
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In the third coupled case, differentiating y once with respect to T1 and using Eqs. (64b) and (64d), we obtain

y,T1
¼ sþk ðSI

11�SI
21Þa

2
slþðS

I
12�SI

22Þa
2
s0 l0�cos 2yð ÞðRI

2a
2
sl�RI

1a
2
s0 l0 Þþsinð2yÞðRR

2a
2
sl�RR

1a
2
s0l0 Þ

� �
(67)

For steady-state solutions, the amplitude asl and as0l0 and the new phase y angle should be constant. Then we obtain

�k½RR
1 cosð2yÞ�RI

1 sinð2yÞ�asla2
s0 l0 ¼ 0 (68a)

�k½RR
2 cosð2yÞþRI

2 sinð2yÞ�a2
slas0l0 ¼ 0 (68b)

sþk ðSI
11�SI

21Þa
2
slþðS

I
12�SI

22Þa
2
s0 l0�cos 2yð ÞðRI

2a
2
sl�RI

1a
2
s0l0 Þ

�
þsinð2yÞðRR

2a
2
sl�RR

1a
2
s0 l0 Þ
�
¼ 0 (68c)

Using Eqs. (68a) and (68b), we obtain

sinð2yÞ
cosð2yÞ

¼
RR

1

RI
1

¼�
RR

2

RI
2

¼ C (69)

Substituting Eq. (69) into Eq. (68) and eliminating y yields

s
a2

s0 l0
¼ �k ðSI

11�SI
21Þ

a2
sl

a2
s0l0
þðSI

12�SI
22Þ7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þC2

p
RI

2

a2
sl

a2
s0 l0
�RI

1

					
					

" #
(70)
Fig. 6. Variations of the amplitude ratios a11/a12 with the differences of the two frequencies s=a2
21 for the case of 1:1 internal resonance between the

second and third modes: (a) overview diagram and (b) detail with enlarged scale.

Fig. 7. Variations of the amplitude ratios a11/a12 with the differences of the two frequencies s=a2
21 for the case of 1:1 internal resonance between the

second and third modes at different nonlinear coefficient: (a) overview diagram and (b) detail with enlarged scale.



Y.-Q. Tang, L.-Q. Chen / Journal of Sound and Vibration 330 (2011) 110–126122
1:1 internal resonances between the second and third modes of the in-plane moving plates with k=1 may be activated
when g is near g=1.8231. Fig. 6 shows variation of the amplitude ratios a11/a12 with the differences of the two frequencies
s=a2

12 for this case. It can be found that two solutions exist when s=a2
12o�210.8 or s=a2

124�25.54, four solutions exist
when s=a2

12 =�210.8, s=a2
12 =�56.456, or s=a2

12 =�25.54, six solutions exist when �210.8os=a2
12o�200.948,

�200.948os=a2
12o�56.456, or �56.456os=a2

12o�25.54, and five solutions exist when s=a2
12 =�200.948.

Fig. 7 shows variation of the amplitude ratios a11/a12 with the differences of the two frequencies s=a2
12 for the case of

1:1 internal resonance between the second and third modes of the in-plane moving plates at different nonlinear
coefficients. The dotted lines denote k=0.6, the dashed lines denote k=0.8, and the solid lines denote k=1.0. The
relationship between s=a2

12 and the nonlinear coefficient at a given a11/a12 is linear.
7. Numerical confirmations via the differential quadrature scheme

The first four-order dimensionless natural frequencies of the linear generating system and the nonlinear frequency,
predicted analytically in the previous section, also can be numerically confirmed. The differential quadrature scheme will
be developed here to solve numerically the linear generating system and the primitive system for the two-dimensional full
plate model and the one-dimensional reduced plate model.
7.1. Two-dimensional numerical approach

Consider the unit square domain0rxr1, 0ryr1 of the in-plane moving rectangular plate. The number of sampling
points are Nx and Ny in the x and y directions, respectively. The partial derivatives of w(x, y) at any sampling point (xi, yi) as
the weighted linear sum of the function wij values at all the sampling points chosen in the solution domain of spatial
variable. The partial derivative of the rth order with respect to x, the partial derivative of the sth order with respect to y, the
mixed partial derivative of the sth order with respect to y and the rth order with respect to x are described as follows,
respectively [38]:

@rwðxi,yjÞ

@xr
¼
XNx

k ¼ 1

AðrÞik wkj,
@swðxi,yjÞ

@ys
¼
XNy

l ¼ 1

BðsÞjl wil,
@rþ swðxi,yjÞ

@xr@ys
¼
XNx

k ¼ 1

AðrÞik

XNy

l ¼ 1

BðsÞjl wkl

ði¼ 1,2,. . .,Nx, k¼ 1,2,. . .,Nx�1, j¼ 1,2,. . .,Ny, l¼ 1,2,. . .,Ny�1Þ

(71)

where the weight coefficients with the recurrence relationship are

Að1Þik ¼

P
Nx

m ¼ 1,mai
ðxi�xmÞ= ðxi�xkÞ P

Nx

m ¼ 1,mak
ðxk�xmÞ


 �
ði,k¼ 1,2,. . .,Nx, iakÞ

XNx

m ¼ 1,mai

1

xi�xm
ði¼ 1,2,. . .,Nx, i¼ kÞ

8>>>>><
>>>>>:

(72)

Bð1Þjl ¼

P
Ny

m ¼ 1,maj
ðyj�ymÞ= ðyj�ylÞ P

Ny

m ¼ 1,mal
ðyl�ymÞ

" #
ðj,l¼ 1,2,. . .,Ny, jalÞ

XNy

m ¼ 1,maj

1

yj�ym
ðj¼ 1,2,. . .,Ny, j¼ lÞ

8>>>>>><
>>>>>>:

(73)

and in case of r=2, 3, y, Nx�1, s=2, 3, y, Ny�1,

AðrÞik ¼

r Aðr�1Þ
ii Að1Þik �

Aðr�1Þ
ik

xi�xk

 !
ði,k¼ 1,2,. . .,Nx, iakÞ

�
XNx

m ¼ 1,mai

AðrÞim ði¼ 1,2,. . .,Nx, i¼ kÞ

8>>>>><
>>>>>:

(74)

BðsÞjl ¼

s Bðs�1Þ
jj Bð1Þjl �

Bðs�1Þ
jl

yj�yl

 !
ðj,l¼ 1,2,. . .,Ny, jalÞ

�
XNy

m ¼ 1,maj

BðsÞjm ðj¼ 1,2,. . .,Ny, j¼ lÞ

8>>>>>><
>>>>>>:

(75)
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Introduce Nx and Ny sampling points as

x1 ¼ 0, xNx
¼ 1, xi ¼

1

2
1�cos

i�1

Nx�1
p

� �
 �
ði¼ 2,3,. . .,Nx�1Þ,

y1 ¼ 0, yNy
¼ 1, yj ¼

1

2
1�cos

j�1

Ny�1
p

� �
 �
ðj¼ 2,3,. . .,Ny�1Þ

9>>>=
>>>;

(76)

Following the above definitions, the DQ analogue of the linear generating system can be obtained as

€w0ijþ2g
XNx�1

k ¼ 2

Að1Þik
_w0kjþðg2�1Þ

XNx�1

k ¼ 2

~A
ð2Þ

ik w0kjþz
XNx�1

k ¼ 2

~A
ð4Þ

ik w0kjþx
4
XNy�1

l ¼ 2

~B
ð4Þ

jl w0il

 

þ2x2
XNx�1

k ¼ 2

~A
ð2Þ

ik

XNy�1

l ¼ 2

~B
ð2Þ

jl w0kl

!
¼ 0 ði¼ 2,3,. . .,Nx�1, j¼ 2,3,. . .,Ny�1Þ (77)

where ~A
ðrÞ

ik and ~B
ðsÞ

jl are the modified weighting coefficient matrices. In Eq. (77) the simple supported boundary conditions
are built in.

7.2. One-dimensional numerical approach

The solution to Eq. (11) can be assumed as

wðx,y,tÞ ¼
X1

m ¼ 1

fðx,tÞjmðyÞþcc (78)

where jm(y)=sin(mpy) is the mth modal function in the y direction of the system and cc stands for complex conjugate of
the proceeding terms.

Substitution of Eq. (78) into (11), multiplying jm(y), and integrating from y=0 to 1, then applying the orthogonal
condition, the DQ analogue of the primitive system can be obtained as

€f i ¼�2g
XNx�1

k ¼ 2

Að1Þik
_fk�ðg2�1Þ

XNx�1

k ¼ 2

~A
ð2Þ

ik fk�z
XNx�1

k ¼ 2

~A
ð4Þ

ik fk�2m2p2x2
XNx�1

k ¼ 2

~A
ð2Þ

ik fk

 

þm4p4x4fiÞþ
3

2
ekz 3

XNx�1

k ¼ 2

~A
ð2Þ

ik fk�mm2p2x2fi

 ! XNx�1

k ¼ 2

Að1Þik fk

 !2

þm2p2x2 m
XNx�1

k ¼ 2

~A
ð2Þ

ik fk

 2
4

�m2p2x2fiÞf
2
i þ2m2p2x2

ð1�mÞ
XNx�1

k ¼ 2

Að1Þik fk

 !2

fi

3
5þoðeÞ ði¼ 2,3,. . .,Nx�1Þ (79)
Fig. 8. The comparison of the first four-order dimensionless natural frequencies.
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7.3. Numerical demonstrations

In this paper, we choose sampling points Nx=Ny=9 in two-dimensional approach and Nx=9 in one-dimensional
approach. Fig. 8 presents the comparison for the variation of the first four-order dimensionless natural frequencies of the
linear generating system with dimensionless in-plane moving speed for z=1, x=1. It can be observably found that the
one-dimensional numerical approach and two-dimensional numerical approach have a good agreement with the complex
mode approach.

It can be found that the results of the one-dimensional approach, the two-dimensional approach and the complex mode
approach the not only yield the qualitatively same results, but also the quantitatively close. The three approaches have the
same qualitative results. On the other hand, the two-dimensional approach spends much more computationally time than
the one-dimensional approach, so we just investigate the comparison of analytical and numerical results by the one-
dimensional approach in the following example.

Fig. 9 shows the comparison of the analytical and numerical nonlinear frequencies for the first mode for g=3.0 and k=1.
The amplitude for the first mode is a110=w/29cs0 l09. The one-dimensional approach yields the quantitatively close results,
while there is a small quantitative difference between the analytical and the one-dimensional numerical results.

8. Conclusions

In this investigation, the nonlinear free transverse vibration of an in-plane moving plate with constant speed is
investigated. The governing equation with the boundary conditions is derived from the Hamilton principle and the Hooke
law. The method of multiple scales is employed to analyze the governing equation to yield the following conclusions. At
last, the differential quadrature schemes are developed for the one-dimensional full plate model and the two-dimensional
reduced plate model. The schemes are applied to solve numerically the linear generating systems and the nonlinear
governing equations.

In the multi-scale analysis on the case without internal resonances, it is found that, if two modes are considered, a
response in one of them must be zero. Therefore, it is valid to investigate no internal resonance cases without the coupling
among modes. The relationship between nonlinear frequencies and amplitudes of the in-plane moving plate is showed at
different in-plane moving speeds for the first two modes. Both modes predict the same trends of the nonlinear free
vibration frequencies varying with the initial amplitudes and the in-plane moving speeds. The nonlinear frequencies
increase with the increasing the initial amplitudes. When the initial amplitude is zero, the results reduce the frequencies of
the linear generating system. The larger in-plane moving speed leads to the smaller frequencies and the rapider increase of
the frequencies with the initial amplitudes, especially, it increases rapidly when the in-plane moving speed is near the
critical in-plane moving speed. Besides, the effects of are more significant in the higher order mode. The nonlinear
frequencies involving higher order modes are more sensitive to the initial amplitudes, the in-plane moving speeds, and the
nonlinear coefficients.

In the multi-scale analysis on the case with internal resonances, the 3:1 internal resonances between the first and
second modes and between the third and fourth modes, as well as 1:1 the second and third modes are detected. The
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relationship between nonlinear frequencies and amplitudes of the in-plane moving plate is demonstrated to be the same as
those in the no internal resonance cases. However, the amplitude ratios vary with the detuning parameters. The variations
are showed at different nonlinear coefficients. It is found that the relationship between the detuning parameters and the
nonlinear coefficients at a given amplitude ratio is linear.

The first four-order linearized natural frequencies are confirmed by the one-dimensional numerical approach and two-
dimensional numerical approach. They have a good agreement with the complex mode approach. The three approaches
not only yield the qualitatively same results, but also the quantitatively close. They decrease with the increasing in-plane
moving speeds.

The comparison of the analytical and numerical nonlinear frequencies for the first mode is also demonstrated. Though
the one-dimensional approach yields the quantitatively close results, there is a small quantitative difference between
them.
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